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For many countries in the Global South traditional poverty estimates are available only
infrequently and at coarse spatial resolutions, if at all. This limits decision-makers’ and
analysts’ ability to target humanitarian and development interventions and makes it difficult to
study relationships between poverty and other natural and human phenomena at finer spatial
scales. Advances in Earth observation and machine learning-based methods have proved
capable of generating more granular estimates of relative asset wealth indices. They have
been less successful in predicting the consumption-based poverty measures most commonly
used by decision-makers, those tied to national and international poverty lines. For a study
area including four countries in southern and eastern Africa, we pilot a two-step approach
that combines Earth observation, accessible machine learning methods, and asset-based
structural poverty measurement to address this gap. This structural poverty approach to
machine learning-based poverty estimation preserves the interpretability and policy-relevance
of consumption-based poverty measures, while allowing us to explain over 70% of cluster-level
variation in a pooled model and over 50% even when predicting out-of-country.

Keywords: assets — expenditures— machine learning — poverty maps — small area estimation

Accurate estimates of the number of people deprived of a minimum acceptable
standard of living are available infrequently and only at the first- or second-level

administrative unit, if at all, for many places in the Global South. These aggregate
estimates can mask pockets of extreme poverty and quickly become outdated. This
limits policymakers’ ability to recognize and respond to the most urgent human
needs, to study the processes that cause and perpetuate poverty, and to evaluate
the effectiveness of interventions. The scarcity of poverty estimates in low-resource
settings persists because high quality household surveys of income and consumption
expenditures are difficult and expensive to administer, and therefore under-supplied.
This gap is particularly stark in many African countries (1).

Recent research seeks to address this gap through modeling efforts that leverage
advances in machine learning (ML) and Earth observation (EO)(1–10). Scientific
progress in this space has focused on improving the out-of-sample predictive accuracy
of asset-based poverty (or wealth) measures through advances in algorithms or in
the feature sets used to explain outcomes. For these advances to translate into
greater uptake and impact, however, the measures predicted must also be policy
relevant. The maps of asset wealth indices prevalent in this literature do not readily
translate to the consumption-based poverty measures more often used by policy
makers, such as the share of people living below national or international poverty
lines.

Our goal is to improve the relevance of the dependent variable, or object, for
ML poverty mapping without compromising our ability to predict it. We do this
using a two-stage modeling approach that first calibrates a model of ‘structural’
poverty (11). Structural poverty is defined as the expectation that a household
will on average have a (non-)poor level of consumption expenditure given their
durable characteristics, such as productive assets. We then train EO-based models
on aggregates of the fitted structural poverty estimates from the first-stage, allowing
us to predict into un-surveyed areas.

Data fusion for micro-level poverty estimation. Multiple data fusion methods have
been developed to address gaps in the availability of survey-based poverty estimates.
For decades, researchers and practitioners have used and refined techniques that
leverage census data on the covariates of poverty to produce more precise and
unbiased small area estimates (SAEs) (12–15). First, a model of household or
area-level characteristics on poverty is estimated using sample-based survey data
that includes consumption expenditures (or income). The resulting parameterized
model is then used to predict poverty at more granular scales from the same
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household or area-level characteristics available for the entire
population in the census data. These SAEs offer insight into
spatial patterns of poverty, but are published infrequently
and often with long lag times.∗ Further, such poverty maps
are not designed for inter-country comparability and cannot
be easily customized because of the proprietary nature of the
underlying data.

Newer machine learning (ML) based methods that harness
Earth observation (EO) and other geospatial ‘Big Data’
have proved capable of generating more granular estimates
of relative deprivation within as well as across low- and
middle-income countries (1–3, 6, 8).† Instead of using census
data, researchers derive area-level characteristics from cell
phone records, satellite imagery, and various EO-based data
products – including publicly available sources (1–3, 8). These
data are used in concert with machine learning (ML) methods
that are well suited to handle large feature sets and model
non-linear relationships.

Amongst efforts to leverage geospatial data to interpolate
and extrapolate into unsurveyed places, individual country
studies in the SAE tradition have frequently retained flow-
based monetary measures as their object or predictand. In
contrast, multi-country studies have favored indices of asset
holdings to proxy spatial patterns in poverty, with several
advantages. Survey data collection of asset stocks is easier,
cheaper, and less prone to substantial measurement error than
of flow measures of well-being like expenditures or income.
As a result, high-quality asset data are more often available
to train ML models. Productive assets are the stocks that
generate income flows that enable consumption expenditure.
Thus the connection between asset-based wealth indicators
and income- or expenditure-based poverty measures follows
intuitively. Indeed, the literature on asset-based, structural
poverty demonstrates that, especially in poor places subject
to multiple market failures that impede consumption expen-
diture smoothing, productive asset holdings reflect expected,
permanent income (11, 19–21). Household assets and their
correlates may also be more easily observed from EO. Satellite
imagery can detect the size and quality of buildings, vehicles,
and infrastructure but may overlook many short-term drivers
of community-level consumption expenditures, such as disease
outbreaks, labor market conditions, or price shocks. For these
(and other) reasons, ML models trained on assets are more
prevalent and consistently outperform models of monetary
poverty and other well-being measures (2, 3, 22).

The result is that the poverty mapping literature has
primarily produced maps of relative asset wealth. Meanwhile,
practitioners predominantly use monetary poverty measures
based on flows of income or consumption expenditures that
can be anchored to interpretable normative thresholds, such
as national and international poverty lines representing
a minimum acceptable standard of living as defined by
governments and multi-lateral institutions. For example,
under the first Sustainable Development Goal to “end poverty
in all its forms everywhere”, the first target is to bring
all people above the $2.15 (2017 purchasing power parity,
PPP) per person per day extreme global poverty line by 2030

∗This is in part because contemporaneous censuses and household surveys are scarce. Methods
for SAE with disjoint census and consumption surveys have been developed (16, 17). See (18) for
a discussion of variations of the SAE approach suited to different data availability scenarios.

†Country-level work that uses geospatial data to build more directly on SAE methods is also gaining
traction (7, 9, 10).

(23).‡ Progress toward such a goal cannot be tracked using
an asset wealth index, which has no direct conversion to
monetary poverty. While asset wealth indices may seem an
intuitive proxy for consumption-based poverty, this assumed
correlation is not always empirically well supported (24).

Unlike unit-less asset indices, estimates of monetary
poverty can be compared over place and time using PPP con-
versions. Monetary measures are also flexible. For example,
consumption expenditures data can be used to estimate the
Foster-Greer-Thorbecke (FGT) class of distribution-sensitive
poverty measures, including the ‘poverty gap’ and ‘poverty
gap squared’ (25). The FGT measures take into account how
far below the poverty line people’s incomes or consumption
expenditures fall, and satisfy a range of desirable axiomatic
properties (25, 26). The advantages of consumption-based
poverty measures are balanced by the expense (and therefore
scarcity) of high quality training data and the stochastic
nature of consumption. Snapshots of monetary poverty may
be dominated by transitory shocks or seasonality in income
or expenditure patterns. This may obscure the chronic or
structural deprivations of first-order humanitarian concern
(11, 27–29).

As ML poverty mapping gains traction, it is a timely
moment to consider these trade-offs in policy relevance,
comparability, and accuracy that follow the choice of an
asset- vs. consumption-based poverty map, as well as how
they might be mitigated. One way forward, which we set forth
in this paper, is to leverage both asset and consumption data
to train the ML models that predict poverty from geospatial
features. We propose a set of structural poverty measures
– based on the expectation of consumption expenditures
given household asset holdings (11) – as predictands for
micro-level multi-country poverty estimation. This paper
describes the conceptual advantages of these measures, and
develops a two-stage approach to ML structural poverty
mapping. We also evaluate this approach empirically using
data from 13 Living Standards Measurement Studies (LSMS)
household surveys conducted in Ethiopia, Malawi, Tanzania,
and Uganda between 2008-2020, spatially and temporally
matched to geospatial data on population density, building
footprints, remoteness, night lights, elevation, slope, rainfall,
temperature, and the Normalized Difference Vegetation
Index.

Results

We propose a set of structural poverty measures with desirable
properties as the object (or predictands) of ML poverty
mapping. These structural poverty measures are stable
and forward-looking because they are anchored to the stock
of productive assets. They are also expressed in familiar
flow-based units tied to a normatively meaningful standard
of living (e.g., the share of people living below a poverty
line). They can be compared across countries and over time.
These attributes respond to the needs of humanitarian and
development programming, which require an understanding
of both absolute and relative levels of deprivation, and must
be responsive to poverty now and into the future.

‡When the 2030 Agenda for Sustainable Development was released in 2015 this goal referenced
the $1.25 per person per day (2005 PPP) extreme poverty line. This was later updated to the $1.90
(2011 PPP) and most recently to $2.15 (2017 PPP). These updates are implemented primarily to
adjust for inflation. The empirical portion of this paper employs the $1.90 (2011 PPP $) poverty
line, which was in effect at the start of this research.
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To construct these structural poverty measures in the
training data, we begin by introducing and modeling a
more durable, asset-based analogue to flow-based mone-
tary measures: structural consumption (see Methodology).
Structural consumption is the expectation of consumption
expenditures for a given portfolio of household assets. We
use the household-level structural consumption estimates
from these models to construct the FGT poverty headcount
(P α=0

s ), poverty gap (P 1
s ), and poverty gap squared (P 2

s )
aggregates for each survey cluster sampling unit, where
subscript s denotes structural and superscript α = 0, 1, 2
is the FGT poverty aversion parameter. These cluster-
level structural poverty measures become the training data
for the EO-based models. Because structural poverty is
a latent variable, the performance of our EO models is
validated against our estimates of structural poverty. These
estimates in turn rely on assumptions about the strength
and stability of the relationship between productive assets
and consumption expenditures, and the stochastic nature of
shocks to consumption.

We evaluate the strength of these assumptions for our
study area prior to proceeding to train EO-based models from
our structural poverty estimates. Our empirical assessment
confirms the premise that productive assets are strong
predictors of consumption expenditures, but with some
limitations. In particular, we find that asset-expenditures
relationships vary even across our study countries, which
are geographically proximate and share many social and
economic characteristics. Differences in the distributions
of our structural estimates versus realized consumption,
which should be similar in expectation, emerge and model
fit declines when we predict structural consumption out-of-
country.

In addition to its conceptual advantages, we hypothesize
that structural poverty can be more accurately proxied than
realized consumption expenditures using ML models and
EO data. This is supported by the comparative success in
predicting assets over consumption in the literature (1, 2, 22).
Our empirical results corroborate this expectation. We find
that models of structural poverty consistently outperform
models of comparable realized poverty measures, by multiple
performance metrics and by a substantial margin. A multi-
country ML model predicts approximately 72% (50% out-of-
country) of cluster-level variation in the structural poverty
headcount, compared to 57% (12% out-of-country) for a
comparable realized poverty measure.§

Our results allow us to expound current limitations of
EO-based poverty mapping, in particular weaker model
performance at the bottom of the wealth distribution and the
risks of bias when predicting spatially out-of-sample. These
problems persist, but do not appear to be exacerbated by the
structural poverty estimation approach.

Estimating structural poverty from productive assets. As we
consider candidate structural consumption models, tradi-
tional performance metrics have the potential to mislead.
Perfect or near-perfect correlation between structural predic-
tions and realized consumption expenditures would signal
over-fitting. The advantage of a structural measure is that
it filters out the ‘noise’ of classical measurement error and

§This is based on standard cross-validation and a global extreme poverty line of $1.90 per person
per day, 2011 PPP.

Fig. 1. Comparison of realized versus structural (non-)poor classification. The circle
indicates the share of households with the same classification in the training (open
circle) and test (filled circle) data. The horizontal line is the difference between
agreement in the training and the test set. Country models are based on training
and test data from the same country, while leave-one-country-out (LOCO) models
are trained on the pooled dataset excluding the test country.

stochastic shocks from which a household may have already
recovered by the time data are published and an agency
had time to assimilate and act upon the poverty estimates.
We instead look for a balance of fit and stability, as well
as evidence of unbiasedness as we compare regressions of
consumption on assets, including parametric first- (OLS-1)
and second-order (OLS-2) polynomials and a random forest
(RF-)regression. We also consider an RF-classification model
for (non-) poor status, suitable only for poverty headcount
(P 0) estimation. Separate sets of models are estimated for
each individual country and for the pooled (all-country) data
set, and compared to a test set of held-out EAs in the country
or else the held-out country.

Our structural consumption models confirm our prior from
the literature that productive assets are strongly predictive
of consumption expenditures, using both linear and non-
linear models. As depicted in Figure 1, structural predictions
and realized consumption estimates agree on the (non-)poor

Tennant et al. PNAS — May 23, 2024 — vol. XXX — no. XX — 3
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classification of 62-82% of households at the global extreme
poverty line (z = $1.90 a day in 2011 PPP), and 66-90%
for the global poverty line (z = $3.20 a day in 2011 PPP).¶
The RF models for structural poverty have overall stronger
agreement with realized poverty estimates in the test set than
the OLS models (see SI Figure S10 for additional measures
of fit). However, while agreement with the test set is highest
in the RF models they are also less stable, with greater
differences in these statistics from training to test set.

In theory, our structural poverty models should produce
unbiased estimators of realized consumption. Thus, while
we anticipate lower variance in the structural versus realized
consumption distributions, we expect similar means at higher
levels of aggregation (e.g., at the country level). In Figure
2, we compare the realized and predicted distributions of
consumption expenditures by country and by model. For
the single country models (left column), we observe no
distinguishable difference in means for Malawi, Tanzania
and Uganda. In Ethiopia, predictions may be biased slightly
upwards (the mean of the RF predictions is $3.66, versus $3.48
for realized consumption). For the pooled models (middle
column), we still see no difference in means for Malawi and
Tanzania, but the Uganda RF model now predicts mean
consumption at $2.04 compared to the realized $1.87 and in
Ethiopia the difference is more pronounced compared to the
single country model. As we move to leave-one-country-out
(LOCO) validation (right column) we detect differences in
most models; the largest of these for Malawi ($3.53-$3.68
versus the realized $2.70) and Tanzania ($3.02-$3.13 versus
the realized $3.98).

Our approach assumes a stable relationship, across space
and over time, between productive assets and consumption
expenditure. Our empirical assessment suggests that this is
a strong assumption, more likely to hold when models are
trained on same-country data versus the data of neighboring
countries. This may reflect substantive differences across our
study countries: for example, the returns to land or livestock
depend on the asset quality as well as local agro-ecology,
labor and agricultural markets, the quality of institutions
and social safety nets, and other factors. Observed differences
may also reflect inconsistencies in measurement: how assets
and consumption are surveyed and aggregated by different
national statistical agencies.

Importantly, the quality and productivity of assets may
also vary systematically with poverty. Poor households
may have lower quality assets, or may live in places where
the productivity of those assets is lower due to lack of
access to markets, production technologies, institutions, or
physical infrastructure. If so, our models might over-predict
consumption for the poorest households and under-predict
consumption of the wealthiest. Empirically, we cannot
distinguish this heterogeneity in the asset-consumption
relationship from differences that arise due to stochastic
variation in consumption. For example, if the lowest and
highest realizations of consumption expenditures arise due to
classical measurement error or stochastic shocks, rather than
true structural poverty, we would expect to see a reduction in
the variance of the distribution. This reduction in variance
is observed (see SI Figure S11). The households with the

¶For brevity, we refer to these simply as the $1.90 and $3.20 poverty lines or the global extreme and
global poverty lines henceforth. As previously noted, these thresholds have more recently been
updated to 2017 PPP values of $2.15 and $3.65, respectively, which are substantively similar.
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Fig. 2. Distributions and comparison of means for realized consumption and
structural estimates. The mirrored density plots represent the distribution of realized
consumption expenditures as well as structural estimates from OLS and RF models.
Horizontal lines represent the mean of each distribution. The brackets at the top
of each plot indicate whether a t-test for the difference in means is statistically
significant (statistical significance is indicated by not significant (ns), * p < 0.05, **
p < 0.01, *** p < 0.001).

lowest realized consumption expenditures in our data are
predicted to be slightly better off in terms of structural
consumption. The reverse is also true: the households
with the highest realized consumption have relatively lower
structural consumption. One way forward, particularly in
settings where we have a sense of the magnitude of the
undesirable component of this difference, would be to adjust
predicted structural poverty estimates ex-post. However, here
we are unable to parse the desirable reduction in transient
shocks and noisy data offered by structural poverty estimation
from undesirable risk of bias due to model errors that correlate
with poverty. We thus proceed using un-adjusted estimates
from RF structural consumption models to build the training
data set for the EO models. However, we urge that this be
kept in mind when interpreting final estimates, particularly
for the distribution-sensitive P 1 and P 2 measures that will
be more affected by such biases.
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Predicting structural poverty from Earth Observation. EO
models trained on structural poverty (P α

s ) demonstrate
consistently superior predictive performance over models
trained on realized poverty (P α

r ), with higher out-of-sample r2

values, lower Root Mean Squared Error (RMSE), and higher
Spearman’s rank correlation coefficients (ρ). RF models
consistently outperform comparable OLS specifications, but
the main result is qualitatively similar for the linear models.
Results from the RF models are summarized in Table 1 and
results by geography and for the benchmark OLS models
are reported in Figures S12-S17 and SI Table S1. To ensure
that the superior performance of the structural models is not
simply a product of the noisier consumption data (of concern
particularly for the r2 metric), we also compare the EO-based
model trained on realized consumption against the test set of
structural poverty estimates. Our main result is robust to this
alternative validation: the structural EO model consistently
outperforms the realized EO model when both are evaluated
against structural poverty. In other words, the EO-based
model trained directly on consumption expenditures does not
appear to be indirectly learning about structural poverty.

Our models consistently perform best when trained on
data that spatially overlaps with the test set.‖ For example,
using standard (vs. LOCO) cross-validation, our pooled
model for the poverty headcount P 0

s at z = $1.90 has an
average r2 of 0.72 (vs. 0.50), RMSE of 0.17 (vs. 0.23), and ρ
of 0.84 (vs. 0.73). To visualize this, Figure 3 plots the first
and second-stage out-of-sample structural predictions for all
three spatial approaches to cross-validation (see Materials and
Methods: Data Splitting), as well as realized consumption
expenditures (left-most panel) for comparison.

This result is consistent with the literature as well as
expectations; what poverty ‘looks like’ from a satellite
view varies somewhat across even neighboring countries
as the natural, social, and economic systems differ across
contexts. Measurement error may also be correlated by
country, survey, and even spatially within surveys due to the
enumerators or the way that people answer questions about
consumption. In sum, we may have both true differences and
differential ability to detect these relationships across settings.
Accordingly, performance across our country-specific models
is heterogeneous, with Uganda standing out for its weak
performance across evaluation metrics and specifications. For
the P 0

s at z = $1.90 predictand with standard cross-validation,
Uganda (vs. other countries) has an average r2 value of 0.48
(vs. 0.52-0.82), RMSE of 0.23 (vs. 0.16-0.17), and ρ of
0.62 (vs. 0.68-0.86). It does especially poorly in spatial
cross-fold validation, with one test fold predicted so poorly
that the r2 is negative (see SI Figures S12-S17 for additional
country-specific results). There may be several reasons for
this, including the aforementioned issues of data quality or a
fundamentally weaker correlation between our EO features
and structural poverty in Uganda. However, we suspect that
it at least in part reflects the small sample size for Uganda:
with only 245 clusters, we may simply not have enough data
to train a reliable model. We have substantially more data
for the remaining study countries, with 1047 (Ethiopia), 1691
(Malawi), and 1642 (Tanzania) unique clusters.

‖Specifically, containing clusters from the same country and/or region; there is no test/train overlap
of the clusters.

Table 1. Summary out-of-sample performance for EO-based random
forest models

A. FGT Poverty Measures, extreme global poverty line (z = $1.90)

Average
R-squared

Average
RMSE

Average
Spearman’s ρ

Validation Pr Ps Pr Ps Pr Ps

country cv 0.542 0.648 0.209 0.169 0.717 0.736
P 0 country sp-cv 0.272 0.396 0.242 0.190 0.531 0.617

pooled cv 0.565 0.716 0.210 0.174 0.736 0.837
pooled loco 0.116 0.502 0.289 0.233 0.518 0.732
country cv 0.463 0.600 0.109 0.058 0.713 0.751

P 1 country sp-cv 0.130 0.289 0.121 0.067 0.550 0.631
pooled cv 0.520 0.661 0.106 0.054 0.746 0.858
pooled loco 0.093 0.248 0.169 0.072 0.509 0.732
country cv 0.404 0.508 0.073 0.026 0.698 0.731

P 2 country sp-cv 0.061 0.060 0.074 0.030 0.543 0.591
pooled cv 0.459 0.592 0.069 0.024 0.730 0.850
pooled loco 0.031 0.033 0.118 0.030 0.490 0.729

B. FGT Poverty Measures, global poverty line (z = $3.20)

Average
R-squared

Average
RMSE

Average
Spearman’s ρ

Validation Pr Ps Pr Ps Pr Ps

country cv 0.655 0.762 0.189 0.166 0.693 0.719
P 0 country sp-cv 0.383 0.617 0.193 0.175 0.557 0.602

pooled cv 0.660 0.769 0.178 0.165 0.704 0.777
pooled loco 0.256 0.569 0.251 0.214 0.528 0.696
country cv 0.607 0.759 0.119 0.081 0.761 0.814

P 1 country sp-cv 0.317 0.591 0.145 0.092 0.594 0.650
pooled cv 0.644 0.800 0.125 0.085 0.783 0.872
pooled loco 0.135 0.577 0.191 0.114 0.534 0.763
country cv 0.523 0.695 0.097 0.053 0.746 0.813

P 2 country sp-cv 0.241 0.470 0.113 0.059 0.557 0.633
pooled cv 0.581 0.765 0.098 0.053 0.776 0.876
pooled loco 0.131 0.474 0.158 0.071 0.526 0.764

C. Asset Wealth Index

Validation R-squared RMSE Spearman’s ρ

country cv 0.707 7.446 0.780
Ā country sp-cv 0.508 8.517 0.650

pooled cv 0.771 7.461 0.816
pooled loco 0.512 9.665 0.668

Notes: Diagnostic statistics are averaged over folds
and geographies. The corresponding disaggregated perfor-
mance statistics are plotted in SI Figures S12-S17.

For comparison and to better situate our findings in
the literature, we also predict asset wealth (Ā) using a
comparable model and EO feature set. Results are reported
in Part C of Table 1. However, while structural and realized
estimates are for P α measures, the asset index is instead
aggregated to the EA level using a simple mean. This limits
comparability: to which poverty line and to which P α do we
compare? We cannot compare RMSE across the dependent
variable types and the r2 may also be sensitive to differences
in the distribution, variance, and quality of different data
sources. Still, it is encouraging that for the structural poverty
headcount models (P 0

s at z = $1.90 and $3.20), the r2 and
ρ for Ā are in the same general range: neither dependent
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Fig. 3. Maps of Poverty Headcount (P0) at the $1.90 extreme poverty line. For comparison, the leftmost panel for each row are EA poverty rates estimated directly from
realized consumption in the survey data. The remaining panels on the top row are predictions from the asset-consumption models into the test sets (combining model results
from cross-validation). The corresponding maps in the bottom row are predicted from EO data trained on the structural poverty estimates.

variable demonstrates a clear and consistent performance
advantage vis-a-vis the other for all models.

Our goal is to improve the relevance of the dependent
variable for ML poverty mapping without compromising our
ability to predict it. To usefully compare and contrast across
predictands and samples requires a model and feature set
with good predictive performance, which we achieve using
an RF model and a suite of EO-derived variables. When
predicting the structural poverty measures we achieve an
average r2 value (the most commonly reported metric in this
literature) of 0.72 for the pooled cross-validation and 0.50
for the LOCO validation (and a slightly higher r2 for the
comparable asset index models). In comparison, a previous
effort using satellite imagery and deep learning to predict
consumption and assets using a LOCO approach for a very
similar study area acheived r2 for consumption (and assets)
of 0.36 (0.46) for Malawi, 0.39 (0.63) for Nigeria, 0.52 (0.54)
for Tanzania, and 0.44 (0.62) for Uganda (2). Another
study that trained ML models on asset wealth data from
23 African countries achieved an average r2 of 0.70 for held

out country-years (1). An asset-wealth model trained on data
from 56 low- and middle-income countries (LMICs) achieved
an average r2 of 0.70 using basic cross-validation and 0.59
using LOCO cross-validation (6). Using an approach that
combines inference from interpretable features and satellite
imagery from 25 countries in Africa, another recent study
achieved an average r2 of 0.85 for country-level CV and 0.88
for LOCO prediction of an asset wealth index (8).

In sum, it appears that our models and feature set offer
solid performance despite the comparative simplicity and
accessibility of our data and methods. We suspect that
the small size of the clusters in the LSMS data (from 6-16
households) is also a limiting factor for model performance
(7). While it is useful to situate our performance within
the literature and r2 is an intuitive metric, we caution
that differences in the data, study areas, and approaches
to validation complicate comparison of these values across
studies. The r2 may also not be the most important metric.
For example, the relative ordering of clusters (as captured
by metrics like the rank correlation coefficient) might matter

6 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Tennant et al.
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more for targeting the distribution of a limited aid budget.
Further, all three of the performance metrics considered
thus far (r2, RMSE, and ρ) are agnostic to heterogeneity in
predictive performance. Previous studies have shown that
performance at the low end of the wealth distribution tends to
be the weakest; a promising average r2 statistic may reflect
the ability to distinguish “wealthier clusters from poorer
clusters rather than in separating the poor from the near
poor” (1). To investigate this important issue, we consider
heterogeneity as well as how model performance changes when
predicting the more distributionally sensitive P 1&2 measures.

We find that our models systematically under-predict
the poverty headcount and over-predict asset wealth for the
poorest clusters. Consider again our benchmark pooled EO-
models for P 0

r and P 0
s at z = $1.90 and the model predicting

average asset wealth Ā. All three of these models have good
overall predictive performance and appear to be relatively
unbiased estimators, with predicted means similar to the
reference test sets. Yet the realized, structural, and asset
models all predict that the poorest clusters are better off, in
an absolute sense, than in the reference data. For the bottom
quintile, the EO-model of realized consumption predicts (vs.
the ‘ground-truth’) a poverty rate of 66% (vs. 89%), the
structural model predicts a poverty rate of 67% (vs. 84%),
and the asset model predicts a wealth index of 16.6 (vs.
10.7).∗∗

Our findings across measures also suggest that these
models’ ability to predict the magnitude of the gap below an
extreme poverty line is weak. The proportion of the variation
that we can predict out-of-sample (r2) declines as we move
from the poverty headcount (P 0) to the poverty gap (P 1) and
poverty gap squared (P 2) measures, especially for the $1.90
poverty line and for the spatially out-of-sample predictions
(spatial CV and LOCO). This is not unique to the structural
poverty estimates; r2 also declines for the realized poverty
measures.

In contrast, the rank correlation coefficients are relatively
stable across the P 0−2 predictands. This may arise because
in our data relative poverty rankings appear to be relatively
stable across the P 0−2 measures: in the realized survey data
the rank correlation coefficient (ρ) between P 0&1

r is 0.95 and
between P 0&2

r is 0.91. Rank correlations are similarly high
for the structural estimates. Arguably, these rank correlation
coefficient estimates are the most salient for policymakers or
program managers in geographic targeting of the distribution
of scarce resources.

Discussion

We argue that structural poverty holds promise as a policy
relevant and predictable object for machine learning poverty
mapping. It is expressed in the same units as national and
global policy objectives such as “[e]radicating extreme poverty
for all people everywhere” under the first UN Sustainable
Development Goal (23). Structural poverty is stable and
forward-looking by construction; it is less sensitive to the
classical measurement error and stochastic shocks that may
quickly render maps based on realized consumption outdated.
This interpretability and durability makes structural poverty
estimates well-suited to inform development agendas that
require medium- and long-term planning. They also have

∗∗The values for the asset wealth index range from approximately 1 to 80.

potential for measuring the geography of progress, but further
research is needed to understand the dynamics of structural
poverty mapping.

Of course, for applications such as the targeting of
humanitarian aid in response to shocks policy makers need
to understand both patterns of chronic deprivation and short-
term impacts. We do not argue for structural poverty
mapping to the exclusion of other efforts, especially important
recent progress on mapping and forecasting shocks to con-
sumption, food insecurity, or undernutrition (30, 31). Maps
of asset wealth indices can be predicted quasi-globally and
are useful complements to consumption-based poverty maps,
even if they are imperfect substitutes. Human flourishing
and deprivations are multidimensional and contextual, and
pursuing a rich landscape of data products can eventually
help us to understand the geographic intersections and
discontinuities across measures.

In addition to its conceptual advantages, for a sample
of four countries in southern and eastern Africa, we find
that structural poverty is more easily predicted than realized
poverty from an EO-based feature set. These differences are
substantial. In our benchmark pooled multi-country model for
the $1.90 poverty headcount, the structural poverty measure
has a higher r2 (0.716 vs. 0.565), a lower RMSE (0.174
vs. 0.210), and a higher rank correlation coefficient (0.837
vs. 0.736) compared to models predicting realized poverty.
In some specifications, asset indices may maintain a slight
predictive advantage over structural poverty, but at the cost
of interpretability and relevance to anti-poverty policy.††

The predictive accuracy of our models fall within the range
of recently published multi-country poverty mapping efforts,
but short of recent work that combines interpretable features
and image-based deep learning (8). Our approach prioritizes
accessibility: we use open-source data and models that can be
run on a personal computer.‡‡ Combining structural poverty
and deep- and transfer-learning could be a productive avenue
for future research.

Our results suggest that bias in our structural poverty
estimates is likely modest in the context of interpolation:
for example, when we are predicting poverty using models
trained on survey data from adjacent communities in the
same country. But the likelihood of bias increases when
we extrapolate, for example, into another country that is
not represented in the training data. This has potential
implications for the coverage of structural poverty estimation,
as well as for other methods of FGT poverty estimation. The
type of data we utilize to train the structural consumption
models is of limited availability, while asset indices are
available for more countries.

In theory, we could leverage our trained asset-consumption
models to predict structural poverty in settings where only
asset data are available. But our results give us pause about
undertaking such extensions, given the substantial issues of
bias that emerge even predicting into a neighboring country

††The benchmark pooled multi-country model for average asset wealth has an r2 of 0.771. However,
comparative performance of asset vs. structural models varies across models, and measures
such as r2 and RMSE are sensitive to the scale and distributions of the respective data.

‡‡With the possible exception of the grid searches used to tune the household structural consumption
models. It is therefore worth noting that the performance of these models is not highly sensitive to
the choice of hyperparameters. Models still perform well with simpler (including software default)
approaches to model tuning. For those interested in further reducing computation time, we note
that first-stage models using second-order polynomial OLS regression achieve good performance
in the first-stage structural poverty estimation.
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with many shared attributes. Going beyond the southern
and eastern Africa context it will be necessary to adapt
and re-calibrate the structural poverty model. For example,
incorporating savings and liabilities may be important in
countries where these are more common.

All three sets of models – for realized poverty, structural
poverty, and asset wealth – underestimate poverty in the
poorest places. That this occurs across all three predictands
suggests a fundamental limitation of current methods to
predict extreme poverty from EO features. The same
constraint appears to affect performance at the low end
of the wealth distribution for imagery-based deep learning
approaches (1, 2). This may arise because local labor markets,
social safety nets, health, and other factors that are difficult
to capture from satellite imagery or other geospatial features
play a disproportionate role in the well-being of the poorest
households. It likely also reflects noise or bias in the training
data.

Even before we layer in data fusion and machine learning,
survey-based consumption and poverty measurement is a
topic of lively debate. Household consumption estimates are
known to suffer from measurement errors, and those errors
may inversely correlate with consumption or other markers
of household welfare such as literacy and asset holdings (32).
This has been shown to bias and decrease the accuracy
of proxy means testing (33), and could similarly affect
our first-stage structural poverty estimates. Long-standing
questions around how best to adjust poverty measures for
local consumption patterns and economies of scale within
households have yet to be resolved (34, 35), and may affect
geographic comparisons particularly between urban and rural
populations, or across settings with different livelihoods or
cultural norms regarding household structure. The small
size of the household clusters in the LSMS data introduces
random sampling error that will negatively impact our model
performance (7). Sample bias is also a concern, particularly
if there are fundamental differences between places that are
and are not surveyed (36).

In time, improvements in algorithms or the availability
of EO and other geospatial data products may improve our
ability to detect the features of extreme poverty. But for now,
high quality household surveys and survey-based research are
needed to accurately understand the depth of deprivation
amongst the poorest households and communities. Such data
and analyses are similarly critical to the progression of ML
micro-level poverty mapping in the future (4, 5).

Materials and Methods

Methodology. A household is defined as structurally (non-)poor if in
expectation their portfolio of assets is associated with a (non-)poor
consumption expenditure level (11). Here, we are interested in the
continuous analogue to this binary concept of structural poverty,
which we will refer to as structural consumption and denote by
{CA} for household i in period t:

CA
it = E[Cit|Ait] = f(Ait), [1]

where {Ait} is a vector of household productive assets. Unlike
with a binary (poor and non-poor) classifier, a continuous {CA}
measure allows us to assess the depth of a household’s structural
deprivations and to later construct aggregate poverty measures
that capture the magnitude of any such shortfall.

If we assume that the differences between a household’s
structural consumption and realized consumption are stochastic,

due to random shocks and/or classical measurement error, we
can estimate a regression model that relates household assets and
consumption expenditures to identify the function f :

Cit = CA
it + ϵit = f(Ait) + ϵit, [2]

where {ϵit} are the idiosyncratic errors. The best function f for
prediction is unknown, so we test the comparative performance
of parametric (first- and second-order polynomial regressions)
as well as non-parametric RF models. We also evaluate a RF
classification model, which predicts households’ (non-)poor status.
In our preliminary analysis we consider the bias-variance (or
approximation v. overfit) trade-off between parametric and
non-parametric models. We then use the most promising (RF-
regression) model to construct estimates of structural poverty at
the household level:

ĈA
it = f̂(Ait). [3]

Next, we construct the FGT (25) poverty measures {P α
s },

α = 0, 1, 2, for the survey cluster s of interest. Specifically, we
calculate the estimated share of individuals§§ with consumption
expenditures that fall below a national or international poverty
line, or poverty headcount {P 0

s }; the average shortfall, or poverty
gap {P 1

s }; and the average squared poverty gap {P 2
s }:

P α
s = 1

ns

∑
{j:ĈA

j
<z}

(
z − ĈA

j

z

)α

[4]

where {ns} is the total number of individuals in the sample and
{j : ĈA

j < z} denotes the sampled households j at location s

estimated to be below the poverty line z, and α is the FGT
‘poverty aversion’ parameter. These are the poverty measures we
wish to map; these estimates serve as the training data in the
subsequent step.

Next we consider how to project these estimates of structural
poverty into areas (that we simulate are) not covered by household
surveys. We train OLS and RF regression models to predict
structural poverty {P α

s } using open-source EO and other geospatial
data {Zs} as:

P α
s = g(Zs) + εs. [5]

All RF models are fit to minimize RMSE. The household
structural consumption models use a shared set of hyperparameters
based on results of grid search (see SI Figures S1-S9), with the
number of trees = 1000, the minimum size of terminal nodes
min n = 30, and the maximum number of variables sampled as
candidates at each split at mtry = 8. For the cluster level models,
the number of trees = 200 and the model hyperparameters are
instead tuned individually using a 10 (min n) by 10 (mtry) grid
search. Model tuning is further described in SI Section .

We evaluate model performance using the coefficient of determi-
nation, or r2, the Root Mean Squared Error (RMSE), and a rank
correlation coefficient, Spearman’s ρ. The r2 is the most commonly
cited performance measure in the poverty mapping literature,
and offers an intuitive measure of the degree of variation in the
dependent variable that is explained by the model. However, it is
sensitive to features of the data (e.g., variance and measurement
error) used for validation (37). RMSE may be a more reliable
indicator of performance, except (as in our case) if we wish to
compare across different types of dependent variables. Finally, rank
correlation coefficients may be a particularly useful diagnostic for
applications such as the geographic targeting of humanitarian or
development aid, when we are most interested in the relative
ordering of communities rather than their absolute levels of
deprivation.

Data splitting. We use three complementary nested cross-validation
approaches that allow us to assess performance in reference to
different use cases:

• k-fold cross-validation First, we split the data for each
country into five folds based on a random draw of the
enumeration areas. We also implement a multi-country, or

§§Consumption expenditures are estimated at the household level, then weighted based on
household size.
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pooled, version of the k-fold cross-validation. This approach
simulates predictive performance for interpolation in surveyed
areas. For example, if we have cluster-sampled household
survey data for the country or countries of interest, this
approach simulates performance predicting into the un-
surveyed clusters.

• Spatial k-fold cross-validation: We also implement a
spatially stratified variation of the k-fold cross-validation.
Here, the test fold is geographically distinct from the training
data to avoid overestimating performance due to spatial auto-
correlation (6, 38). This would be analogous to a use case
where we have survey data for the country of interest, but
not for all regions, and therefore need to spatially extrapolate
within the same country.

• Leave-one-country-out cross-validation: Finally, we test
the validity of a pooled model for predicting into a country
for which (we simulate that) there are no household survey
data available. Here, we leave out each country in the data
set in turn, training the model on all other countries’ data.
Extrapolation into un-surveyed countries requires stronger
assumptions, but also has the advantage of more training
data.

Household survey data. Our approach requires data on consumption
expenditures (or income) and productive assets, geo-referenced at
the micro-level. These are obtained from from 13 LSMS surveys:
for Ethiopia (2011-2012, 2013-2014, 2015-2016 & 2018-2019),
Malawi (2010-2011, 2016-2017 & 2019-2020), Tanzania (2008-2009,
2010-2011, 2012-2013, 2014-2015 & 2019-2020) and Uganda (2011-
2012). We use the published consumption expenditure aggregates
from the respective datasets, which have been constructed by
aggregating across several categories of consumption and then
adjusting for regional cost-of-living differences. According to survey
documentation, these are broadly consistent in their construction
across countries and surveys. We convert all values to 2011
purchasing-power-parity US dollars. Our asset index, which is
not pre-constructed in the LSMS data, is calculated following
the data reduction techniques used to consolidate and harmonize
asset data across Demographic and Health Surveys (39–42). We
implement a broad definition of productive assets: the stocks that
generate the income that enables consumption expenditure. This
includes human capital, land, livestock, capital equipment and
buildings, and water and sanitation. Details of the procedure and
specific assets are described in the SI.

Geo-spatial features. Our geo-spatial predictors consist of inter-
pretable features, known to correlate with poverty and/or wealth,
derived from publicly available data sources. Because our data are
geo-referenced at the cluster level with some random displacement
to preserve anonymity, we extract survey-year averages of our
geo-spatial variables for a 2km buffer radius in urban areas and a

5km buffer radius in rural areas (unless otherwise noted). Feature
values are contemporaneous to the survey data unless otherwise
noted; we include lags for some variables based on the expected
temporal relationship. Large datasets were pre-processed in Google
Earth Engine, with dataset construction in R.

Several of our features relating to geography and demography
are time-invariant or slow-moving. We include building footprints,
obtained from the Open Buildings Project Version 2 (43), which
are a reliable indicator of human settlement and socioeconomic
conditions on the ground (7, 10, 44). Average slopes and elevations
are computed via Google Earth Engine based on data from the
NASA Shuttle Radar Topography Mission (SRTM) to capture
geophysical constraints on economic development (45). We also
include travel time to the nearest urban centre, a known correlate
of prosperity, from the Malaria Atlas Project (MAP) (46).

We draw on time-series data for features that vary substantively
over the study period. Population count and density, which have
been shown to be predictive of asset wealth in previous studies
(6, 8), are derived from data by WorldPop (47, 48). A three-year
average of nighttime lights is included as a proxy for economic
activity (49). Given the time span of our dataset (2008-2020),
we use a nighttime lights product that harmonizes data from the
Defense Meteorological Satellite Program (1992–2013) and the
Visible Infrared Imaging Radiometer Suite (2012–2018) (50, 51).

Climatic conditions and episodes of heat and water stress may
impact people’s well-being through multiple avenues, especially
via conditions for agriculture and livestock. We use the Climate
Hazards group Infrared Precipitation with Stations (CHIRPS)
to construct variables for long-term rainfall patterns, annual
rainfall, and rainfall z-scores (52). Binned temperature variables
reflecting the hours above 30 degrees Celsius are constructed
from the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) 2-meter air temperature (53).
The Normalized Difference Vegetation Index (NDVI) is derived
from the NOAA Climate Data Record (CDR) of Advanced Very
High Resolution Radiometer (AVHRR) Surface Reflectance (54).
The NDVI is an indicator of greenness that has been shown to
correlate with poverty in rural, agriculturally dependent settings
(3, 38).
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Household data cleaning and pre-processing. Household surveys suffer from missing data and measurement error, and these14

data quality issues may vary systematically with the country and specific survey. Uganda has the highest prevalence of missing15

values; approximately half of the sample households have at least one missing data field, often consumption expenditure, land,16

livestock, or other agricultural assets. For Ethiopia, Malawi, and Tanzania 4% - 14% of households are missing necessary data17

fields. We do not detect patterns of imbalance across households with or without missing data. Observations with missing data18

are dropped. We also use winsorization to replace extreme values, truncating at the 99th percentile. This removes outliers,19

especially those that appear erroneous (e.g., owning 124 computers or 111 bicycles). Some rare assets are converted to dummy20

variables, such as: irrigated land, boats, ploughs, tractors, harvesters, and sprayers.21

Asset wealth. We construct our asset wealth index from a common set of assets surveyed in the Living Standards and Measurement22

Surveys (LSMS). These include tropical livestock units, total land area, irrigated land area, number of rooms per person,23

number of ploughs, radios, TVs, bicycles, motorcycles, and cellphones, as well as access to electricity, improved drinking water,24

improved toilet facilities, and improved materials for roof, wall, and floor. Several of these variables are recoded following the25

relevant literature. For example, tropical livestock units convert all livestock to common units based on (an assumed, based26

on species) live weight of 250kg per TLU (1). Designations of improved or unimproved facilities or materials are based on27

DHS standards (2). These same re-coding procedures are used to process the asset variables prior to use in the structural28

consumption modeling.29

To construct a single continuous asset index from these variables, we draw on procedures used to calculate the Demographic30

and Health Surveys Relative Wealth Index (RWI) (3, 4) and the International Wealth Index (IWI) (5). A common wealth31

score across the full study area is first calculated, as well as separate urban and rural wealth scores. The common scores,32

which exclude assets that may have divergent relationship with wealth in rural vs. urban areas, are then used to calibrate the33

separate urban and rural models.34

Consumption expenditures. Consumption expenditure aggregates are pre-computed in the LSMS surveys, but typically provided35

in nominal local currency values. We convert these values to a common currency and equalize their purchasing power over36

countries and years using purchasing power parity (PPP) adjustments.∗ We adjust all consumption expenditures to 2011 PPP37

dollars per capita per day as follows:38

Real consumption ($/day/person) = Consumption in local currency
PPP conversion factor × hhsize × 365 [1]39

Asset to Consumption Modeling40

Model tuning. The structural consumption models utilize a shared set of hyper-parameters: an mtry = 8, a min_n = 30, and41

the number of trees = 1000. These were selected based on grid search using nested re-sampling of the training data for a42

single 80%-20% split of each permutation of the study area (individual country, pooled, and LOCO). Re-tuning the household43

models for every data-split of the cluster-level analysis, as we do in the second stage of the analysis, would be computationally44

untenable. Based on the generally small differences in model performance across the hyperparameter grids (see Appendix45

Figures S1-S9) we anticipate that this would not substantially aid model performance. For those interested in replicating this46

approach but without the computational resources for a similar grid search, we note that performance does not appear to be47

highly sensitive to the hyperparameters and that solid performance is achieved with software defaults.48

∗We use the World Bank’s PPP conversion factor, private consumption (LCU per international $), available at: https://data.worldbank.org/indicator/PA.NUS.PRVT.PP
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Table S1. Summary out-of-sample performance for EO-based OLS-1 models

A. Poverty Measures

Average
R-squared

Average
RMSE

Average
Spearman’s ρ

Predictand Validation Pr Ps Pr Ps Pr Ps

country cv 0.453 0.565 0.231 0.198 0.641 0.680
P 0 z = $1.90 country spatial cv 0.161 0.358 0.255 0.216 0.457 0.533

pooled cv 0.486 0.591 0.229 0.212 0.672 0.774
pooled leave-country-out 0.025 0.309 0.310 0.255 0.518 0.691
country cv 0.360 0.387 0.114 0.070 0.657 0.674

P 1 z = $1.90 country spatial cv -0.011 0.216 0.123 0.072 0.418 0.510
pooled cv 0.390 0.533 0.119 0.065 0.657 0.788
pooled leave-country-out -0.014 0.160 0.167 0.081 0.541 0.650
country cv 0.270 0.264 0.072 0.031 0.624 0.667

P 2 z = $1.90 country spatial cv -0.055 0.059 0.079 0.034 0.427 0.496
pooled cv 0.317 0.437 0.077 0.027 0.632 0.772
pooled leave-country-out 0.007 0.039 0.109 0.032 0.527 0.587
country cv 0.603 0.739 0.200 0.181 0.627 0.690

P 0 z = $3.20 country spatial cv 0.302 0.548 0.209 0.181 0.490 0.578
pooled cv 0.607 0.745 0.192 0.171 0.653 0.743
pooled leave-country-out 0.250 0.510 0.260 0.207 0.524 0.707
country cv 0.603 0.741 0.200 0.182 0.627 0.691

P 0 z = $3.20 country spatial cv 0.302 0.549 0.209 0.180 0.490 0.582
pooled cv 0.607 0.747 0.192 0.172 0.653 0.742
pooled leave-country-out 0.250 0.517 0.260 0.207 0.524 0.710
country cv 0.517 0.693 0.131 0.097 0.685 0.750

P 1 z = $3.20 country spatial cv 0.152 0.478 0.165 0.107 0.494 0.602
pooled cv 0.551 0.715 0.140 0.101 0.705 0.815
pooled leave-country-out 0.012 0.443 0.197 0.129 0.539 0.718
country cv 0.441 0.592 0.104 0.066 0.677 0.726

P 2 z = $3.20 country spatial cv 0.050 0.415 0.116 0.069 0.442 0.601
pooled cv 0.461 0.652 0.111 0.065 0.685 0.820
pooled leave-country-out 0.000 0.344 0.157 0.083 0.562 0.711

B. Asset Wealth Index

Predictand Validation R-squared RMSE Spearman’s ρ

country cv 0.646 8.240 0.753
Ā country spatial cv 0.409 8.588 0.588

pooled spatial cv 0.719 8.249 0.769
pooled leave-country-out 0.614 9.349 0.709

Notes: Diagnostic statistics are averaged over folds and geographies.
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Fig. S1. Results of grid search of hyperparameters for random forest structural poverty estimation for Ethiopia.
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Fig. S2. Results of grid search of hyperparameters for random forest structural poverty estimation for Malawi.
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Fig. S3. Results of grid search of hyperparameters for random forest structural poverty estimation for Tanzania.
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Fig. S4. Results of grid search of hyperparameters for random forest structural poverty estimation for Uganda.
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Fig. S5. Results of grid search of hyperparameters for random forest structural poverty estimation for Pooled model (all countries).
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Fig. S6. Results of grid search of hyperparameters for random forest structural poverty estimation for Leave-one-country-out (Ethiopia).
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Fig. S7. Results of grid search of hyperparameters for random forest structural poverty estimation for Leave-one-country-out (Malawi).
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Fig. S8. Results of grid search of hyperparameters for random forest structural poverty estimation for Leave-one-country-out (Tanzania).
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Fig. S9. Results of grid search of hyperparameters for random forest structural poverty estimation for Leave-one-country-out (Uganda).
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Fig. S10. Comparison of measures of fit for continuous models of structural poverty. The solid circle indicates the fit statistic in the test data, the open circle in the training set,
and the line is the difference between these. Wider lines therefore indicate larger differences in fit between the training and test data. Country models are based on training and
test data from that country. Leave-one-country-out (LOCO) models are trained on the pooled dataset excluding that country (which serves as the test set).
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Fig. S11. Kernel density plots of predicted versus realized consumption expenditures.
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Fig. S12. Performance of EO-Structucal Poverty models in test set, for the: Poverty Headcount (P 0) at a poverty line of z = $1.90. For cross-validated models, the bold
symbol indicates mean performance of the shown folds. Country models are based on training and test data from that country. Leave-one-country-out (LOCO) models are
trained on the pooled dataset excluding that country, which serves as the test set.
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Fig. S13. Performance of EO-Structucal Poverty models in test set, for the: Poverty Gap (P 1) at a poverty line of z = $1.90. For cross-validated models, the bold symbol
indicates mean performance of the shown folds. Country models are based on training and test data from that country. Leave-one-country-out (LOCO) models are trained on
the pooled dataset excluding that country, which serves as the test set.
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Fig. S14. Performance of EO-Structucal Poverty models in test set, for the: Poverty Gap Squared (P 2) at a poverty line of z = $1.90. For cross-validated models, the bold
symbol indicates mean performance of the shown folds. Country models are based on training and test data from that country. Leave-one-country-out (LOCO) models are
trained on the pooled dataset excluding that country, which serves as the test set.
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Fig. S15. Performance of EO-Structucal Poverty models in test set, for the: Poverty Headcount (P 0) at a poverty line of z = $3.20. For cross-validated models, the bold
symbol indicates mean performance of the shown folds. Country models are based on training and test data from that country. Leave-one-country-out (LOCO) models are
trained on the pooled dataset excluding that country, which serves as the test set.
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Fig. S16. Performance of EO-Structucal Poverty models in test set, for the: Poverty Gap (P 1) at a poverty line of z = $3.20. For cross-validated models, the bold symbol
indicates mean performance of the shown folds. Country models are based on training and test data from that country. Leave-one-country-out (LOCO) models are trained on
the pooled dataset excluding that country, which serves as the test set.
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Fig. S17. Performance of EO-Structucal Poverty models in test set, for the: Poverty Gap Squared (P 2) at a poverty line of z = $3.20. For cross-validated models, the bold
symbol indicates mean performance of the shown folds. Country models are based on training and test data from that country. Leave-one-country-out (LOCO) models are
trained on the pooled dataset excluding that country, which serves as the test set.
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Fig. S18. Maps of Poverty Headcount (P0) at the $3.20 poverty line. For comparison, the leftmost panel for each row are EA poverty rates estimated directly from realized
consumption in the survey data. The remaining panels on the top row are predictions from the asset-consumption models into the test sets (combining model results from
cross-validation). The corresponding maps in the bottom row are predicted from EO data trained on the structural poverty estimates.
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